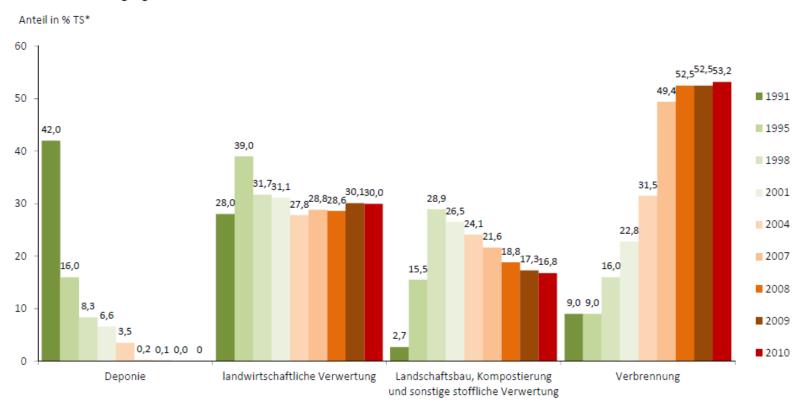


Thermische Klärschlammverwertung Möglichkeit zur Phosphorrückgewinnung

Prof. Dr.-Ing. Norbert Dichtl

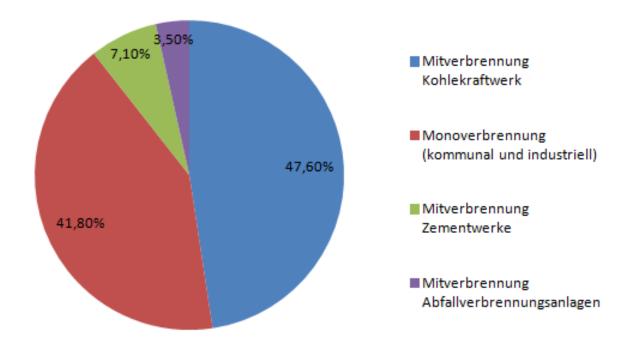
Ist-Zustand der thermischen Klärschlammverwertung


- Laut Statistischem Bundesamt fallen seit 2004 in Deutschland etwa 2 Mio. Tonnen pro Jahr Klärschlammtrockensubstanz aus kommunalen Kläranlagen an.
- Der Anteil der thermischen Verwertung stieg in den letzten 20 Jahren stark an.
- Im Jahr 2011 wurden ca. 55% der Gesamtmenge, rund 1,1 Mio. Tonnen Klärschlamm thermisch verwertet.

Ist-Zustand der thermischen Klärschlammverwertung

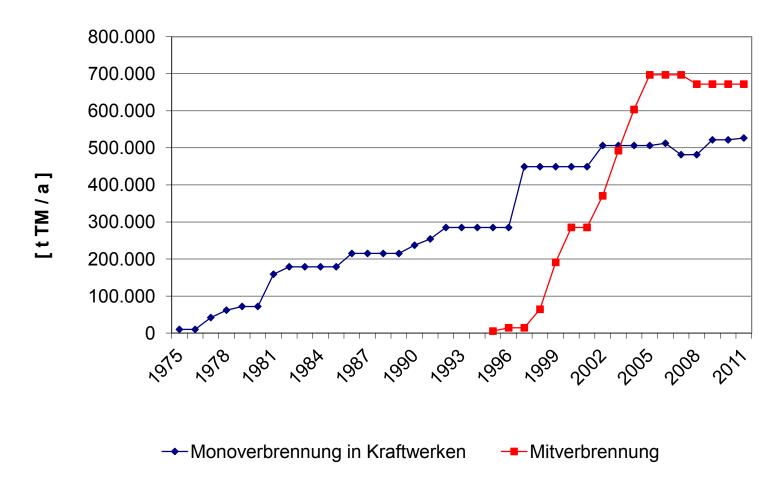
Klärschlammentsorgung

^{*} Umstellung der statistischen Erhebungsmethodik, daher vor 2007 keine Aufsummierung auf 100 % möglich, TS=Trockensubstanz


Quelle: Umweltbundesamt, Zusammenstellung aus Daten des Statistischen Bundesamtes (Stand 2011)

Wege der thermischen Klärschlammverwertung

- Monoklärschlammverbrennung
- Mitverbrennung in Kohlekraftwerken
- Mitverbrennung in Abfallverbrennungsanlagen
- Mitverbrennung in Zementwerken


Wege der thermischen Klärschlammbehandlung in Deutschland (Jahr 2012)

Quelle: Börner, R. et al. (2012) Verfahren zur thermischen Klärschlammverwertung. Müll und Abfall, 44(5), pp 240-247

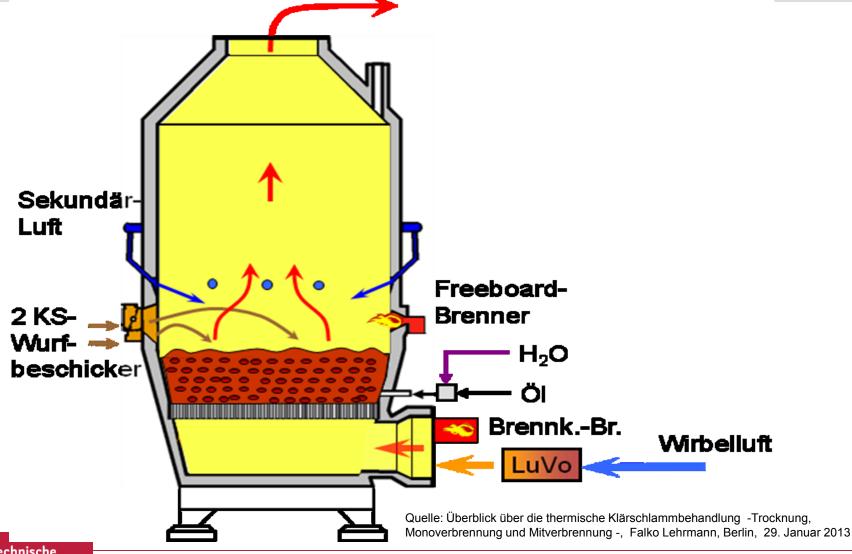
Mitverbrennung in Kraftwerken und Monoverbrennung von Klärschlamm in Deutschland

Klärschlammmitverbrennung

- Derzeit stehen ca. 0,72 Mio. Tonnen TS/a an genehmigten Kapazitäten für die Klärschlammmitverbrennung zur Verfügung.
- Zur Vermeidung erhöhter Schadstoffgehalte im Rauchgas wird der Klärschlammeinsatz in der Praxis meistens auf weniger als 5% TS am Brennstoffinput begrenzt.
- Vorteil: Durch die Mitverbrennung von Klärschlämmen können fossile Brennstoffe und somit auch Kosten eingespart werden.
- Nachteil: Der im Klärschlamm enthaltene Phosphor wird aus dem Kreislauf ausgeschleust.

Klärschlammmonoverbrennung

- Derzeit gibt es in D ca. 20 Monoklärschlammverbrennungsanlagen (MKVA) mit einer Gesamtkapazität von rund 0,58 Mio. Tonnen TS/a und 7 betriebliche MKVA, die zusammen 0,83 Mio. Tonnen TS/a Klärschlammoriginalsubstanz (OS) verbrennen können.
- Jährliche Kapazitäten einzelnen MKVA reichen von 8.000 Tonnen bis 10.000 TS /a.
- Monoverbrennung erfolgt in großtechnischen Anlagen vorwiegend in stationären Wirbelschichtfeuerungen.
- Etagenöfen und –wirbler sind eher Ausnahmen.


Verfahren zur thermischen Klärschlammverwertung

Monoverbrennung	Mitverbrennung	Alternative Verfahren
 Ohne Ascheschmelzen Wirbelschicht Etagenofen Etagenwirbler Rostfeuerung 	 Kohlekraftwerke Staubfeuerung Wirbelschichtfeuerung Rostfeuerung Schmelzkammerfeuerung 	 Vergasung Wirbelschichtvergasung Festbettdruckvergasung Flugstromvergasung Konversionsverfahren
Mit AscheschmelzenSchmelzzyklon	MüllverbrennungsanlagenRostfeuerungIndustrieanlagen	PyrolyseNiedertemperatur- konvertierung
	ZementherstellungPapierschlammverbrennung	Nassoxidationoberirdische Verfahrenunterirdische Verfahren

Stationäre Wirbelschicht mit Verbrennungsluftvorwärmung

Folie 9/26

Veränderungen der Emissionsgrenzwerte in der 17. BlmSchV

Schad-		Alt Entwurf vor Anhörung		Kabinettsbeschluss			Änderungsverordnung					
stoff			17. Apr 12		05. Sep 12			02. Mai 13				
	HMW	TMW	JMW	HMW	TMW	JMW	HMW	TMW	JMW	HMW	TMW	JMW
Staub	30	10	-	20	5	-	20	5 (10 für Anlagen	-	20	5 (10 für Anlagen	-
								mit FWL <50MW)			mit FWL <50MW)	
HCl	60	10	-	40	10	-	60	10	-	60	10	-
NO _X	400	200	100>50MW	400	150	100	400	150 (200 für	100 ¹⁾³⁾	400	150 (200 für	100 ¹⁾³⁾
								Anlagen mit FWL			Anlagen mit FWL	
								<50MW) ²⁾			<50MW) ²⁾	
Hg	0,05	0,03	-	0,03	0,02	0,01	0,05	0,03	0,011)2)	0,05	0,03	0,011)2)
NH ₃	-	-	-	15	10	10	-	-	-	15	10	-

1)Gilt nicht für bestehende MVA mit einer FWL < 50 MW

2) Gilt erst ab 2019

3) Gilt nicht für bestehende MVA

Quelle: Gleis, M., Wiechmann, B., Neue rechtliche Regelungen für die thermische Behandlung von Klärschämmen im Rahmen der Umsetzung der IED, 8. DWA Klärschlammtage, Fulda

Emissionswerte der Monoverbrennungsanlage Großlappen

Schadstoff	Grenzwert in mg/m³ für den Tagesmittelwert	Grenzwert in mg/m³ für den 1/2 h – Mittelwert	Einhaltung des Grenzwertes in % der Messzeiten beim Tagesmittelwert	Einhaltung des Grenzwertes in % der Messzeiten beim 1/2 h – Mittelwert	Jahresmittel in mg/m³
SO ₂	50	200	100	100	9,7
HCI	10	60	100	100	0,02
NO _x	200	400	100	100	22,29
Staub	10	30	100	100	0,37
C ges.	10	20	100	100	0,16
СО	50	100	100	100	0,01

Schadstoff	Grenzwert	Mittelwert	Höchstwert
Cd und Tl in mg/m ³	0,05	< 0,0001	< 0,0001
Hg in mg/m ³	0,05	0,002	0,002
Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn in mg/m ³	0,5	< 0,005	< 0,006
As, Benzo(a)pyren, Cd, Co, Cr in mg/m ³	0,05	< 0,002	< 0,002
Dioxine und Furane TE NATO/CCMS in ng/m ³	0,1	< 0,001	< 0,001
HF in mg/m ³	4	< 0,05	< 0,05

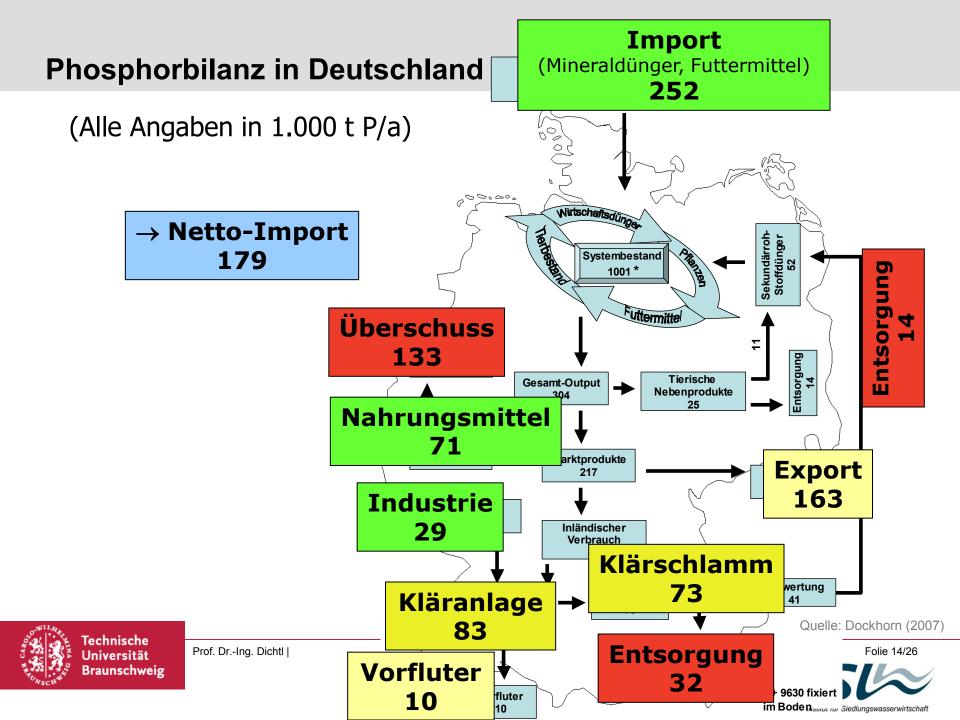
Quelle: Bayerisches Landesamt für Umwelt

Klärschlammverbrennung zur P-Rückgewinnung

Klärschlammverbrennung

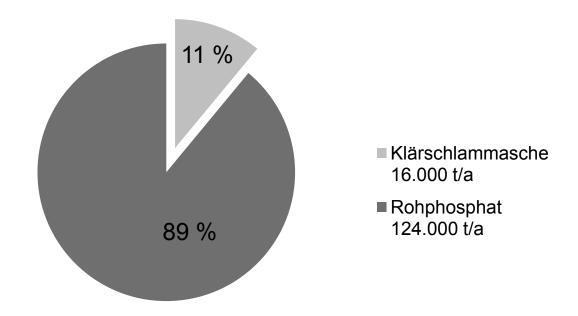
- vermindert den Volumenstrom
- zerstört org. Schad-/Stoffe und endokrine Substanzen weitestgehend
- verflüchtigt Stickstoffverbindungen aus Klärschlamm
- führt zu einer Wiederfindungsrate von 90% der P-Zulauffracht in der Asche
- führt bei Fällschlamm zu P-haltigen Aschen mit schlechter Pflanzenverfügbarkeit
- konzentriert Schwermetalle auf → direkte Verwendung bei Überschreitung der Grenzwerte (Düngemittelverordnung) nicht möglich
- stellt einzigen "Verwertungsweg" bei verbotener landwirt. Schlammausbringung dar
- führt zu hohen Entsorgungskosten (Kreislaufwirtschaft)
- ermöglicht ortsungebundene P-Rückgewinnung (transportfähig) oder Speicherung
- Mindert die Importabhängigkeit

Prof. Dr.-Ing. Dichtl |


Phosphatgehalt in der Klärschlammasche

Siliciumdioxid	SiO ₂	35 - 40 %
Aluminiumoxid	Al ₂ O ₃	15 – 20 %
Eisenoxid	FeO ₃	10 – 20 %
Calciumoxid	CaO	15 – 25 %
Phosphat	P_2O_5	10 – 23 %

Quelle: Überblick über die thermische Klärschlammbehandlung -Trocknung, Monoverbrennung und Mitverbrennung -, Falko Lehrmann, Berlin, 29. Januar 2013



Phosphatbedarf - Deckung durch Klärschlammasche in D.

- Im Wirtschaftsjahr 2011/2012 wurden ca. 140.000 t zur Düngemittelproduktion benötigt
- Derzeitige Potential der Rückgewinnung von Phosphat aus Klärschlammasche von 24 bestehenden Monoverbrennungsanlagen (BAM Berlin):

Folie 15/26

P-Recycling aus Klärschlammaschen

Beschaffenheit der Klärschlammaschen:

 Sollten keine Überdosierung von Eisensalzen durch chemische Phosphatfällung der Abwasserbehandlung aufweisen → Eisenphosphate sind praktisch nicht pflanzenverfügbar

Direkte Verwertung von Klärschlammaschen

- ermöglicht durch DüMV 2008
- als Düngerroh- oder -zusatzstoff für die Landwirtschaft (SM-arm)
- bei elektrothermischer P-Erzeugung als Rohstoffsubstitut (Fe-arm) (z.B. Thermphos)

Aufbereitung von Klärschlammaschen

- zur Erhöhung der Bioverfügbarkeit von P
- zur Ausschleusung von Schwermetallen
- Verfahrensvarianten:,
 - Nasschemische Extraktion
 - Thermochemische Aufbereitung

Aufbereitungsverfahren zur P-Rückgewinnung aus Aschen

Thermische Aufbereitung

Reco-Phos Thermisch induzierte Reduktion von P in InduCarb-Reaktor

Thermphos Asche als Sekundärrohstoff bei industrieller P-Produktion

Mephrec Schmelzverglasung bei rd. 2000°C

AshDec/SUSAN Drehrohrofen bei 1000°C mit chloridischer SM-Entfernung

ATZ Eisenbadreaktor P-Reduktion im Eisenbad bei 1500°C

Nasschemische Verfahren

BioCon Schwefelsäureaufschluss + Ionentauscher

- SEPHOS Sequentielle pH-Einstellung mit Säure und Lauge

SESAL-Phos Ansäuerung + Laugung zur CaP-Fällung + Al-Gewinnung

- PASCH Salzsäureaufschluss und Solventenextraktion

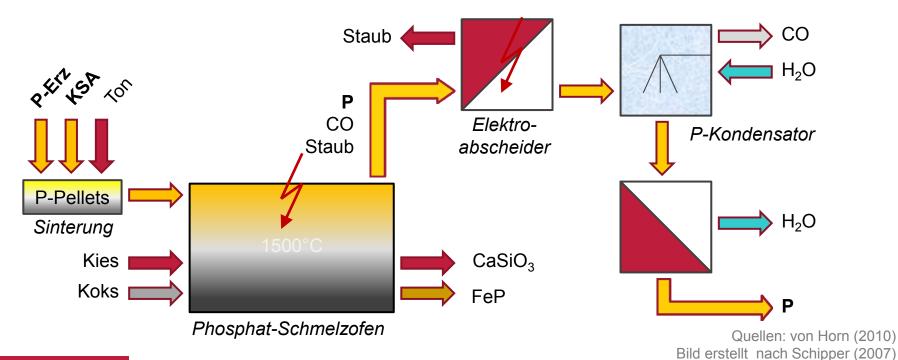
- Bioleaching Mikrobieller P-Aufschluss mit Rücklösung

Elektrokinetische Aufbereitung

- EPHOS Säureaufschluss + Dialyseeinheit

Thermphos

P-Substitution in elektrothermischer P-Erzeugung durch KSA

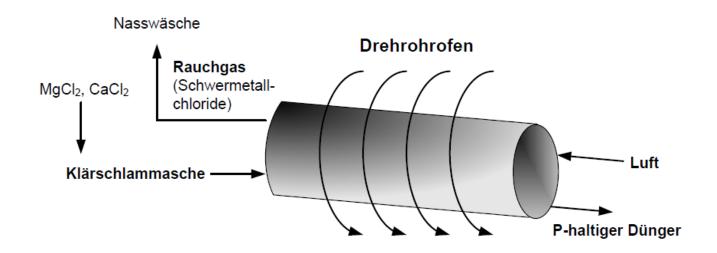

Elektrothermische Phosphor-Herstellung (1500°C)

Klärschlammasche als Substitut für P-Erz zur P-Pellet-Herstellung

Limitierung KSA: 0,2 mol Fe/mol P (keine Fe-Fällung in KA!)

Vorgang: P-Pellets + Kies + Koks → Schlacke + Rauchgas + Phosphor

• Formel: $2 \text{ Ca}_3(PO_4)_2 + 6 \text{ SiO}_2 + 10 \text{ C} \rightarrow 6 \text{ CaSiO}_3 + 10 \text{ CO} + P_4$

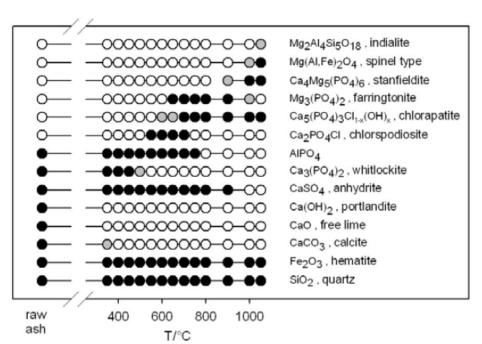


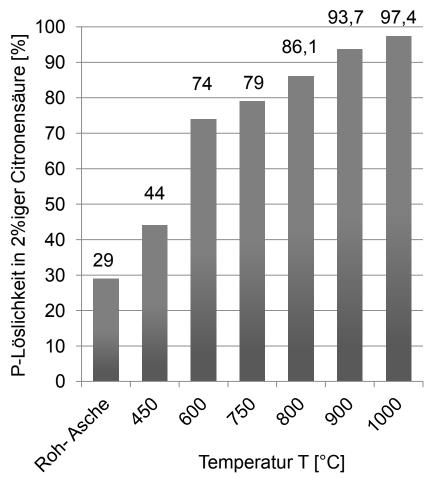
Thermochemische Verfahren zur P-Rückgewinnung aus Aschen

Thermochemisches Aufbereitungsverfahren (AshDec / SUSAN)

- Umlagerung des P durch Hitzeeinwirkung (850 1000°C)
- P verbleibt in der Schlacke in pflanzenverfügbarer Form (AshDec / SUSAN)
- Schwermetalle verdampfen als Chloride (AshDec / SUSAN)

Pilotanlagen in Betrieb


Folie 19/26


Prof. Dr.-Ing. Dichtl |

Thermochemische Umlagerung von P-Verbindungen

Thermisch induzierte mineralische Umlagerung von Phasen:

Bessere P-Bioverfügbarkeit mit steigender Temperatur

Folie 20/26

Nasschemische Verfahren zur P-Rückgewinnung aus Aschen

Extraktionsverfahren zur Aufbereitung

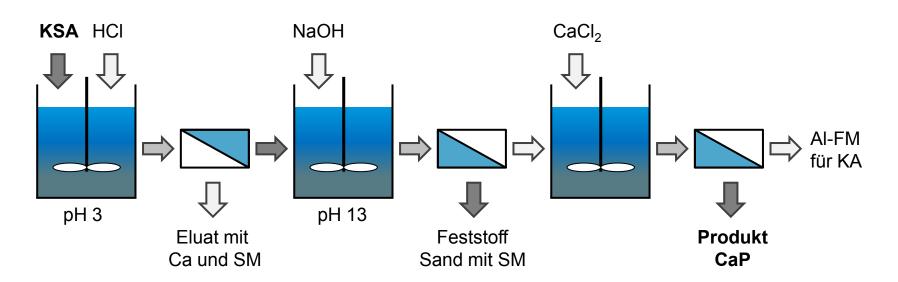
Abtrennung einer Wertstoffkomponente aus Stoffgemisch durch:

- Lösen von P aus Asche
 - Nasschemisch mit Säure / Base
 - Mikrobiell (Bioleaching)
- Rückgewinnen von P aus Lösung unter Ausschleusung von SM
 - Fällung als MAP oder CaP (SESAL-Phos, SEPHOS, PASCH,...)
 - Ionentauscher (BioCon)
 - Adsorption (CSH)
 - Elektrokinetik (EPHOS)

Nur Technikumsmaßstab umgesetzt

SESAL-Phos als nasschemisches Aufbereitungsverfahren von Asche

Sequentielle Lösung und Fällung von Schwermetallen (SM) und P-Verbindungen mit Al-Gewinn aus Al-haltigen KSA (TU Darmstadt)


Ansäuerung: Rücklösung der SM und P-Umlagerung von CaP zu AIP ~ 3,0 kg HCl/kg P

3,0 3 7_{kg} P

Laugung: Lösen von AIP und Fällung von SM

 \sim 5,3 kg NaOH/ $_{\rm kg~P}$

CaP-Fällung: Fällen von CaP

Folie 22/26

Is a servirts of the servirts of

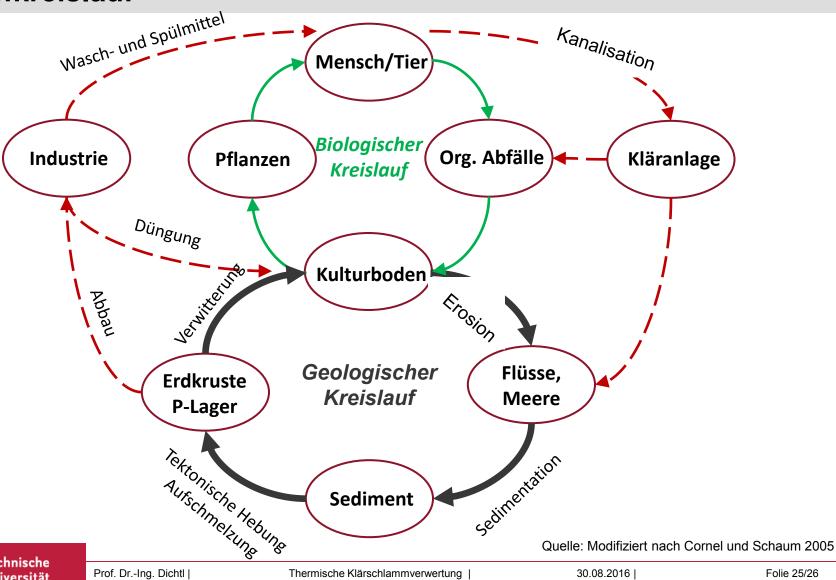
Phosphatrecyclingsverordnung?

Warum Phosphatrecyclingsverordnung?

Langfristige Sicherung der Versorgung mit Phosphor als strategisch wichtigem Rohstoff

Förderung und Beschleunigung eines verstärkten Einsatzes der Phosphorrückgewinnung aus Klärschlämmen

Phosphatrecyclingsverordnung?

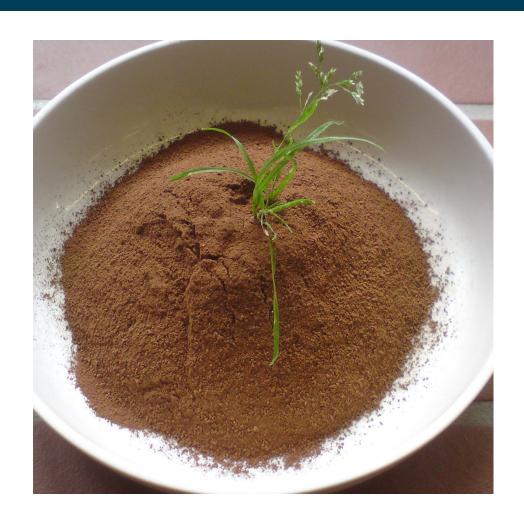

Der Entwuf sieht folgendes vor:

- Klärschlämme im Falle einer Mitverbrennung in einer ersten Stufe maximal einen Phosphatgehalt von 3-5% aufweisen dürfen (entspricht dem **Phosphor**gehalt von rd. 1,2 bis 2%).
- Würde dieser Wert überschritten, wäre ein Verfahren zur Abtrennung on Phosphaten der Mitverbrennung vorzuschalten.
- Im Fall einer Monoverbrennung wäre zu gewährleisten, dass die Verbrennungsaschen unmittelbar zu Düngemitteln aufbereitet werden oder zum Zwecke einer späteren Aufbereitung separat auf Deponien langfristig gelagert werden.

Stoffkreislauf

Vielen Dank für Ihre Aufmerksamkeit

Kontakt:


Prof. Dr.-Ing. Norbert Dichtl

Pockelsstr. 2a 38106 Braunschweig

Tel. +49 (0)531-391-7936

Fax +49 (0)531-391-7947

E-Mail: isww@tu-braunschweig.de

